The Leibnitz Formula for the n 'th Derivative of a Product
Theorem 1. Let $u(x)$ and $v(x)$ be functions of class C^{n}, i.e. functions with continuous n 'th derivative. Then their product is also of class C^{n}, and

$$
\frac{d^{n}}{d x^{n}}[u(x) v(x)]=\sum_{r=0}^{n}\binom{n}{r} \frac{d^{r}}{d x^{r}}[u(x)] \frac{d^{n-r}}{d x^{n-r}}[v(x)],
$$

where

$$
\binom{n}{r}=\frac{n!}{r!(n-r)!}
$$

is the usual binomial coefficient.
Proof. This proceeds by induction on n, the result being trivial for $n=0$ and reducing for $n=1$ to the well-known rule for differentiating a product (once). Suppose then that

$$
\frac{d^{n-1}}{d x^{n-1}}[u v]=\sum_{r=0}^{n-1}\binom{n-1}{r} u^{(r)} v^{(n-1-r)} \quad \text { for some } n \geq 1
$$

where $u^{(r)}=\frac{d^{r} u}{d x^{r}}, v^{(n-1-r)}=\frac{d^{n-1-r} v}{d x^{n-1-r}}$. Then

$$
\begin{gathered}
\frac{d^{n}}{d x^{n}}(u v)=\sum_{r=0}^{n-1}\binom{n-1}{r}\left[u^{(r)} v^{(n-r)}+u^{(r+1)} v^{(n-1-r)}\right] \\
=u v^{(n)}+\sum_{r=1}^{n-1}\binom{n-1}{r} u^{(r)} v^{(n-r)}+\sum_{r=0}^{n-2}\binom{n-1}{r} u^{(r+1)} v^{(n-1-r)}+u^{(n)} v \\
=u v^{(n)}+\sum_{r=1}^{n-1}\binom{n-1}{r} u^{(r)} v^{(n-r)}+\sum_{r=1}^{n-1}\binom{n-1}{r-1} u^{(r)} v^{(n-r)}+u^{(n)} v \\
=u v^{(n)}+\sum_{r=1}^{n-1}\left[\binom{n-1}{r}+\binom{n-1}{r-1}\right] u^{(r)} v^{(n-r)}+u^{(n)} v
\end{gathered}
$$

where

$$
\binom{n-1}{r}+\binom{n-1}{r-1}=\frac{(n-1)!}{r!(n-1-r)!}+\frac{(n-1)!}{(r-1)!(n-r)!}=\frac{(n-1)!}{r!(n-r)!}[(n-r)+r]=\binom{n}{r}
$$

so

$$
\frac{d^{n}}{d x^{n}}(u v)=u v^{(n)}+\sum_{r=1}^{n-1}\binom{n}{r} u^{(r)} v^{(n-r)}+u^{(n)} v=\sum_{r=0}^{n}\binom{n}{r} u^{(r)} v^{(n-r)} .
$$

This completes the proof by induction on n.

