THE LEIBNITZ FORMULA FOR THE n’TH DERIVATIVE OF A PRODUCT

Theorem 1. Let u(z) and v(x) be functions of class C", i.e. functions with continuous n’th
deriwative. Then their product is also of class C™, and
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where

1s the usual binomial coefficient.

Proof. This proceeds by induction on n, the result being trivial for n = 0 and reducing for
n = 1 to the well-known rule for differentiating a product (once). Suppose then that
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This completes the proof by mductlon on n. |
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