For more free Study Material, Mock Test Papers, Audio \& Video Tutorials and ssc news visit www.ssc-cg|2014.in

Shortcut tricks of Time and Work

Time and Work problems are most frequently asked problems in quantitative aptitude. To solve these problems very quickly, you should understand the concept of Time and Work and some shortcut methods.

If a man can do a piece of work in 5 days, then he will finish $1 / 5$ th of the work in one day.
If a man can finish $1 / 5$ th of the work in one day then he will take 5 days to complete the work.
If a man $5 / 6$ th of work in one hour then he will take $6 / 5$ hours to complete the full work.
If A works three times faster than B then A takes $1 / 3 r d$ the time taken by B.
Here are some shortcut rules which can be very useful while solving Time and Work problems.
In total 9 rules are given here.

Rule 1: Universal Rule

This rule can be used in almost every problem.
If M_{1} persons can do W_{1} work in D_{1} days and M_{2} persons can do W_{2} works in D_{2} days then we can say $M_{1} D_{1} W_{2}=M_{2} D_{2} W_{1}$

If the persons work T_{1} and T_{2} hours per day respectively then the equation gets modified to $M_{1} D_{1} T_{1} W_{2}=M_{2} D_{2} T_{2} W_{1}$

If the persons has efficiency of E_{1} and E_{2} respectively then, $M_{1} D_{1} T_{1} E_{1} W_{2}=M_{2} D_{2} T_{2} E_{2} W_{1}$

Rule 2:

If A can do a piece of work in n days, then
The work done by A in one day $=1 / n$

Rule 3:

If A can do a work in D_{1} days and B can do the same work in D_{2} days then A and B together can do the same work in $\frac{D 1 * D 2}{D 1+D 2}$ days.

Rule 4:

If A is twice as good a workman as B, then A will take half of the time taken by B to complete a piece of work.

For more free Study Material, Mock Test Papers, Audio \& Video Tutorials and ssc news visit www.ssc-cg|2014.in

Rule 5:

If A is thrice as good a workman as B, then A will take one third of the time taken by B to complete a piece of work.

Rule 6:

If A and B together can do a piece of work in x days, B and C together can do in y days and C and A together can do in z days, then the same work can be done
By A alone in $\frac{2 x y z}{x y+y z-z x}$ days.
By B alone in $\frac{2 x y z}{y z+z x-x y}$ days.
By C alone in $\frac{2 x y z}{z x+x y-y z}$ days.
By A, B and C together in $\frac{2 x y z}{x y+y z+z x}$ days.

Rule 7:

If A can do a piece of work in D_{1} days, B can do in D_{2} days and C can do in D_{3} days then they together can do the same work in
$\frac{D 1 D 2 D 3}{D 1 D 2+D 2 D 3+D 3 D 1}$ Days.

Rule 8:

If A and B together can do a piece of work in D_{1} days and A alone can do it in D_{2} days, then B alone can do the work in
$\frac{\mathrm{D} 1 * \mathrm{D} 2}{D 2-D 1}$ days.

Rule 9:

If the number of men are changed in the ratio of $m: n$, then the time taken to complete the work will change in the ratio $n: m$

